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We report a calculation aimed at showing that a system of strongly interacting 
baryons under sufficiently high pressure (P 1030  atm) and densities ( p  > 10'5 
g/cc) minimizes the energy by arranging the constituents in a lattice structure rather 
than in a fluid phase. The required pressures and densities do indeed exist in the 
interior of neutron stars, and the interesting question is to find out if the matter 
inside a neutron star can crystallize. Previous work on the structure of neutron 
stars' indicated that the crust is composed of ordinary nuclei arranged in a crystal- 
line structure .2  

By increasing in density, i.e., by going towards the center of the star, the nuclei 
become more and more neutron-rich, and at a density of p 2 1.4 x l O I 4  g/cc they 
dissolve into a fluid. The interior of the star beyond this density is believed to be 
composed of superfluid matter. The aim of this paper is to report on a computation 
intended to give credibility to the hypothesis that the deep interior of the star is a 
solid crystal made of neutrons and hyperons. An earlier attempt in this direction 
was reported by Anderson and Palmer.3 They used the law of corresponding states 
after having adjusted an average nucleon-nucleon potential to a Lennard-Jones 
shape, to find that a gas of neutrons solidifies at P = 1.7 x lo2' atm or p 2 1.4 x 
loL4 g/cc. Similar results were reported by Clark and Chao,4 who improved on the 
original method. Since the nucleon-nucleon potential is less repulsive than the L. J. 
potential (remark made by H.  A. Bethe), and the tail, because of dipole-dipole 
interaction, has a different curvature than that given by one pion exchange potential, 
the argument based on the law-corresponding state cannot be made with total 
confidence. It, however, calls for a quantum mechanical computation either to con- 
firm or to reject the conclusion. We have used the t-matrix approach, which has 
been successfully employed to describe quantum crystals like solid 3He.b We orig- 
inally employed the variational method of Nasanow6 but soon found that the treat- 
ment of angular momentum and spin-dependent correlation functions was difficult 
to incorporate in the formalism. We adopted the t-matrix for which the Brueckner 
type of analysis can be a useful guide. Up to second order, the energy per particle 
is known to be7 

Higher-order terms will be discussed in the final part of the paper. Each particle 
is thought to be localized at a lattice site of a specific crystal structure (say FCC); w 
is the frequency of oscillation of the particle at the lattice site. 

In Equation 1, @ij is the two-body uncorrelated wave-function, which is the 

*Also with the Department of Physics, City College of the University of New 

t On leave of absence from Tata Institute of Fundamental Research, Bombay, 
York, New York, N.Y. 

India. 
218 



Canuto & Chitre: Neutron Star Cores 219 

product of two gaussian functions centered at the lattice sites R1 and Rz, respec- 
tively: i.e. 

@ i j  = W + ( j )  = W W r )  

where (6, 2A) = R1 R2 and a = ( rnw/h )1~2 .  On the other hand, +(r) is the cor- 
related two-body wave function that is taken to satisfy the Bethe-Goldstone equa- 
tions, 7, 8 -  

[T(l) + T(2) + U(1) + U(2) + VIZl\k = €\k (3) 

where the one-body potentials U's are given by 

+(i) U(i)d(i) = C +(i)+(i) Vijqijdrj. (4) 
i s 

The frequency of oscillation w is obtained by solving the set of equations 1-4 
simultaneously. After separating center of mass and relative coordinates, equation 3 
reduces to (+ij = +(R)+(r) )  

The wave-function + has to be taken dependent upon M,, the projection of the 
total spin S. This is because the energy depends upon the spin configuration used 
in the crystal structure under consideration. We will in fact specify the lowest energy 
configuration by arranging the spins in a specific order. It is obvious that a configura- 
tion with all spins parallel will, for instance, give too much energy because of the 
presence of 3P1, which is always repulsive at any distance. The general wave-function 
is therefore written as (see equation of Ref. 9) 

After considering the three possibilities (A) S = 0, M, = 0, ( B )  S = 1, M, = 0, 
(C) S = 1, M, = 1, and substituting the three resulting wave-functions in equation 
5, we get three sets of coupled differential equations. The coupling of various waves 
(within a prescribed spin configuration) is due to the term r '  6 = r6 cos 0 that couples 
odd and even waves. One important question relates to the number of angular 
momentum waves to be included in (B). We had originally worked out the problem 
including up to 1 = 2. Following a remark of H. Bethe, we have extended the com- 
putation up to 1 = 4 and subsequently up to 1 = 6. The 1 = 4 case gave answers 
lower than the I = 2 case, whereas we found little difference between 1 = 4 and 
I = 6. The two-body equation will be written here for the more general case, I = 6. 

The three sets of equations for the case A, B, and C contain 7, 13, 18 coupled 
differential equations each, for a total of 38 partial waves ('So . . . lZ,; . . . 317;). 

S = 0,  M, = 0. In this case the inclusion of I = 6 waves gives rise to 7 coupled 
equations that are written in the following compact form: 



220 Annals New York Academy of Sciences 

(I = 0, ..., 6 )  and I = J .  

s = l , M s  = 0 _____ 

GLJ” + ( E  - UIJ)GIJ + (-l)L+l [k1 5 ( I  + 1 0 1 0 I J’0)2G;il 

+ ( I  - 1 0 1 01 J”O)2Gfi = 0 1 -- 
21 + 1 J,, 

(I = 0, . . . , 6 )  and J takes the values compatible with 1 I - 1 I < J < I + 1 and 
likewise the sum over J’ and J” follows the rule I 11 < J’ < I + 2, I I - 2 I 4 
J” < 1. 

s = l , M s  = 1 (7) ______ 

The notation is same as above. We have used the Reid soft-core nucleon-nucleon 
potential for GJ. 

m y  
yo3 

x = r/ro,  d = 6/ro, p = - (y = 4, F.C.C.; y = 2, B.C.C.) 

Once the $3 are known for each spin and angular momentum component, the 
energy can readily be computed by using equation 1 .  The wave-function for the 
‘SO state is shown in FIGURE 1, along with the f-matrix V$ for the same state. If we 
write $ = +(r )g ( r ) ,  where g(r )  is a correlation function, we see that g ( r )  can almost 
be represented by a step function O(r - r*) where r* is about 0.468 for p = 3 X 1Ol5 
g/cc and k turns out to be s0.25. For r - 0 the behavior of $ is dominated entirely 
by g(r )  that has to be almost zero to make the t-matrix (-$V) finite near the origin; 
away from it, where g tends to one, the gaussian behavior dominates, as seen from 
the peak occurring almost at  r = 6, the first neighbor distance. As stated earlier, 
different spin arrangements in different crystal structures give different answers. 
We tried several configurations until we were able to minimize the energy by choos- 
ing an F.C.C. lattice with a spin arrangement such that any two neighboring nucleons 
on the same cube have opposite spin projections. The most unfavorable case was a 
B.C.C. lattice with one cube filled with all spins up and the second cube with all 
spins down. The reason for this can easily be traced back to the frequent appearance 
of 3 P ~ ,  a wave that is always repulsive for any nucleon distance. 
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FIGURE 1. Wave function $ for the singlet state 'So and the product +(lSo) V('S,) 
at p = 3.34 X 1015 g/cm3 for the nearest neighbor distance A = 0.891 ferrni. 

We also found, as expected, that the fewer the protons, the lower the energy. 
The results presented in TABLE 1 refer to a system of pure neutrons. In the range 
1.6 < pI6 g 5.0 the spread of the single particle wave function a-l turns out to be 
0.238 < a-1 g 0.333, whereas the first neighbor distance is 0.779 < 6 g 1.139. The 
plot of E / N  vs. p for fluidlo and solid configuration is displayed in FIGURE 2, where 
we include the results of the early computation with only 1 = 0, 1, 2. It is concluded 
that at p = 1.6 x 1015 g/cc a neutron gas solidifies into an antiferromagnetic 
F.C.C. structure. 

A remark about higher-order terms is appropriate. In systems that are trans- 
lationally invariant the unperturbed wave function is usually taken to be a plane 
wave; the general Brueckner theory is a low-density expansion, and it is not obvious 
that such a method should work, for example, for solid hydrogen or solid helium. 
Solid hydrogen has recently been studied by Ostgaard,I' and equation 1 was found 
to work surprisingly well. According to Ostgaard, this is partly due to the fact that 
instead of a plane wave one employs gaussian wave function, which already incor- 
porates several correlations. 
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FIGURE 2. Ground-state energy per particle (in MeV) vs the density (in g/cm3) 

for neutron FCC lattice and neutron fluid. The fluid curve is taken from Pand- 
haripande's equation of state. Results of earlier lattice computation performed with 
1 = 2 are displayed for comparison. 

TABLE 1 
F.C.C.  PURE NEUTRONS, MIXED SPINS 

10-15 A a-1 (B.F.) E / N  

1.6 1.139 0.333 1 40 
1.83 1.089 0.327 162 
2.4 0.995 0.312 210 
3.34 0.891 0.274 333 
4.0 0.839 0.261 428 
4.34 0.817 0.250 495 
5 .O 0.779 0.238 610 

The same can be said about solid 3He. The method outlined in this paper has 
been applied to  3He, a n d  the results of E / N  vs. molar volume are given in FIGURE 3. 
The inclusion of 1 = 6,  7 was strictly necessary, as shown years ago by Brueckner 
and  Frohberg.12 In fact, the energy E / N  with only I = 4 is rather poor with respect 
to the experimental value. By solving the coupled equations we found g ( r )  that can 
be represented by 6(r - r,) with rc N 2.2 i. Even though the t-matrix correlation 
function has a considerable overshooting and slower healing than the g(r )  obtained 
from variational theories, it does not mean that the three-body effects are more 
important.5 Day5 has in fact demonstrated that E3 is a function of the two g's ;  
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FIGURE 3. Ground-state energy per particle (in cal/mole) vs. molar volume (in 
cm3/mole) for solid 'He. Four other theoretical curves are exhibited for compari- 
son.':'-" The experimental results are from Edwards and Pandorf .17 For comparison our 
results are shown for / = 2 , 4  and 6,7 .  The energy values saturate around I = 6. 

gun and gaff, the on-the-energy shell and off-the-energy shell. The latter has almost 
no overshoot, and goif and go" are equivalent to  a g that has almost n o  overshoot. 
No detailed study yet exists of go" and gaff for 3He or neutron system, and, therefore, 
no definite conclusion can be drawn. Based on the shape of correlation function ob- 
tained with the present method, we shall compute the wound-integral, k ,  that repre- 
sents the importance of higher clusters. By definition 

After using J ,  = I#Ig (See also equation A . l l  of Ref. 5), one gets 
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where Nk is the number of neighbors. 
For a2 = 1.82, corresponding to a volume of 21 (cm3/mole), k turns out to be 

0.1 35. The value is small enough to make the three-body correlation not overwhelm- 
ingly important. Once the energy per particle E / N  is known it is a simple matter to 
compute the energy density and the pressure. We have fitted P, e with a polynomial 
expression, and the results are 

P36 = 0.5051 - 0.672 p15 + 0.295 p% 

€36 = 0.648 + 0.326 pi5 + 0.206 p:, 
P > 1.6 x 1015 g/cc 

where 

P36 = P. dynes/cm2, 636 = erg/cm3, p15 = 1O-Is p g/cc. 
, 

For densities lower than 1.6 x 1015 g/cc our P and e join smoothly the equation 
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FIGURE 4. Neutron star mass in units of the solar mass vs. the central mass- 
___ 

energy density (in g/cm3). The dashed curve is from Baym and colleagues.'s 
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of state of Pandharipande.'O The general relativistic equations of hydrostatic equilib- 
rium were then integrated, and a plot of M / M ,  vs. pc ( =  central mass-energy 
density) so obtained is displayed in FIGURE 4. 

There is an astrophysical piece of evidenct. to support the idea of a solid core 
inside heavy neutron stars, and this relates to the fact that the starquake theory of 
pulsar speedups, which can so plausibly account for the behavior of the Crab pulsar, 
can explain the observed features of the Vela pulsar only if it is assumed that the 
Vela possesses a solid core. Pines and colleagues' have argued that the solid core 
has sufficient elastic energy to power the starquakes of the magnitude and frequency 
observed in the Vela pulsar. 
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